Highest vectors of representations (total 16) ; the vectors are over the primal subalgebra. | \(g_{6}+g_{-1}+g_{-4}\) | \(-h_{5}-2h_{4}-2h_{3}+h_{2}\) | \(-h_{6}+h_{4}+h_{1}\) | \(g_{4}+g_{1}+g_{-6}\) | \(g_{18}\) | \(g_{14}\) | \(g_{11}+g_{8}\) | \(g_{13}+g_{5}\) | \(g_{15}+g_{12}\) | \(g_{16}+g_{10}\) | \(g_{2}\) | \(g_{7}\) | \(g_{20}\) | \(g_{21}\) | \(g_{17}\) | \(g_{19}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(2\psi_{1}-4\psi_{2}\) | \(0\) | \(0\) | \(-2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}-6\psi_{1}-2\psi_{2}\) | \(2\omega_{1}-8\psi_{1}+2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+8\psi_{1}-2\psi_{2}\) | \(2\omega_{1}+6\psi_{1}+2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}-2\psi_{1}+4\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\psi_{1}-4\psi_{2}} \) → (0, 2, -4) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{-2\psi_{1}+4\psi_{2}} \) → (0, -2, 4) | \(\displaystyle V_{2\omega_{1}-6\psi_{1}-2\psi_{2}} \) → (2, -6, -2) | \(\displaystyle V_{2\omega_{1}-8\psi_{1}+2\psi_{2}} \) → (2, -8, 2) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}-4\psi_{2}} \) → (2, 2, -4) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}+4\psi_{2}} \) → (2, -2, 4) | \(\displaystyle V_{2\omega_{1}+8\psi_{1}-2\psi_{2}} \) → (2, 8, -2) | \(\displaystyle V_{2\omega_{1}+6\psi_{1}+2\psi_{2}} \) → (2, 6, 2) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}-4\psi_{2}} \) → (4, 2, -4) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}+4\psi_{2}} \) → (4, -2, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\psi_{1}-4\psi_{2}\) | \(0\) | \(-2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}-6\psi_{1}-2\psi_{2}\) \(-6\psi_{1}-2\psi_{2}\) \(-2\omega_{1}-6\psi_{1}-2\psi_{2}\) | \(2\omega_{1}-8\psi_{1}+2\psi_{2}\) \(-8\psi_{1}+2\psi_{2}\) \(-2\omega_{1}-8\psi_{1}+2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+8\psi_{1}-2\psi_{2}\) \(8\psi_{1}-2\psi_{2}\) \(-2\omega_{1}+8\psi_{1}-2\psi_{2}\) | \(2\omega_{1}+6\psi_{1}+2\psi_{2}\) \(6\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+6\psi_{1}+2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(-4\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}-2\psi_{1}+4\psi_{2}\) \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-4\omega_{1}-2\psi_{1}+4\psi_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-6\psi_{1}-2\psi_{2}}\oplus M_{-6\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-8\psi_{1}+2\psi_{2}}\oplus M_{-8\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}-8\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+8\psi_{1}-2\psi_{2}}\oplus M_{8\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+8\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+6\psi_{1}+2\psi_{2}}\oplus M_{6\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}+4\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\psi_{1}-4\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-6\psi_{1}-2\psi_{2}}\oplus M_{-6\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-8\psi_{1}+2\psi_{2}}\oplus M_{-8\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}-8\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+8\psi_{1}-2\psi_{2}}\oplus M_{8\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+8\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+6\psi_{1}+2\psi_{2}}\oplus M_{6\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}+4\psi_{2}}\) |
2\\ |